Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Xue-Mei Li, ${ }^{\text {a }}$ Lei Wang, ${ }^{\text {b }}$

Jian-Hua Xu, ${ }^{\mathbf{b}}$ Shu-Sheng Zhang ${ }^{\text {a }}$ and Hoong-Kun Fun ${ }^{\text {c* }}$
${ }^{\text {a College of Chemistry and Molecular }}$ Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, 210093 Nanjing, People's Republic of China, and ${ }^{\text {c }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.036$
$w R$ factor $=0.100$
Data-to-parameter ratio $=9.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## Dispiro[cyclopropane-1,1'(2'H)-cyclobuta[b]-naphthalene- $2^{\prime}, 1^{\prime \prime}$-cyclopropane]- $3^{\prime}, 8^{\prime}$-dione

The title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$, contains two independent molecules in the asymmetric unit. In both molecules, the benzoquinone system is essentially planar and the cyclobutene ring is coplanar with it; the cyclopropyl planes are orthogonal to the cyclobutene ring. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as well as van der Waals forces.

## Comment

We have recently investigated the photo-induced reactions of a series of quinones with bicyclopropylidene (Wang et al., 2003; Usman et al., 2002). During this investigation, we carried out photoreactions of 2-chloronaphthoquinone with bicyclopropylidene and obtained the title compound, (I), as one of the products. This compound was formed by the dehydrochlorination of the primary [ $2+2$ ]-cycloadduct of these two reactants. An X-ray crystallographic analysis of (I) was undertaken to establish the structure and stereochemistry.

(I)

The structure of (I) consists of two crystallographically independent molecules $A$ and $B$ in the asymmetric unit of the non-centrosymmetric space group $P 2_{1}$ (Fig. 1). The bond lengths and angles of $A$ and $B$ (Table 1) agree with each other and are within normal ranges (Allen et al., 1987). In both molecules, the quinone ring is essentially planar, and the dihedral angles between this plane and that of the fused benzene ring are 3.95 (10) and $2.48(12)^{\circ}$ in molecules $A$ and $B$, respectively. The cyclobutene plane makes dihedral angles of 3.38 (13) and $1.35(13)^{\circ}$ with the benzoquinone ring in A and $B$, in contrast with the corresponding value of $73.5(2)^{\circ}$ in a related structure (Wang et al., 2003). This is because the $\mathrm{C} 8=\mathrm{C} 11$ double bond makes the cyclobutene ring and the benzoquinone system essentially coplanar.

In both $A$ and $B$, the configurations of two cyclopropyl rings with respect to the cyclobutene are determined by the C16A$\mathrm{C} 9 A-\mathrm{C} 10 A-\mathrm{C} 14 A$ and $\mathrm{C} 15 A-\mathrm{C} 9 A-\mathrm{C} 10 A-\mathrm{C} 13 A$ torsion angles $\left[-3.6(3)\right.$ and $\left.-4.5(4)^{\circ}\right]$ in $A$, and the corresponding $\mathrm{C} 16 B-\mathrm{C} 9 B-\mathrm{C} 10 B-\mathrm{C} 14 B$ and $\mathrm{C} 15 B-\mathrm{C} 9 B-\mathrm{C} 10 B-\mathrm{C} 13 B$ torsion angles [3.9(3) and $3.2(3)^{\circ}$ ] in $B$. This implies that atoms C9 and C10 are eclipsed, as observed in the related structure (Wang et al., 2003). The two cyclopropyl rings are

Received 7 October 2003 Accepted 13 October 2003 Online 23 October 2003


Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.
orthogonal to the cyclobutene ring, with dihedral angles of 89.1 (2) and $89.5(2)^{\circ}$ in $A, 88.7$ (2) and $89.7(2)^{\circ}$ in $B$. Meanwhile the two cyclopropyl rings are almost perpendicular to one another, with dihedral angles of $87.5(3)^{\circ}$ in $A$ and 86.3 (3) ${ }^{\circ}$ in $B$.

In the crystal structure of (I), molecules $A$ and $B$ are interconnected by $\mathrm{C} 15 B-\mathrm{H} 15 D \cdots \mathrm{O} 2 A$ and $\mathrm{C} 4 A-$ $\mathrm{H} 4 A \cdots \mathrm{O} 1 B(1+x, 1+y, z)$ interactions (Fig. 2 and Table 2). The packing is stabilized by these interactions, as well as van der Waals forces.

## Experimental

The title compound was prepared by photolysis of a benzene solution of 2-chloronaphthoquinone in the presence of an excess amount of bicyclopropylidene, followed by silica-gel column chromatographic separation of the reaction mixture with petroleum ether (b.p. 333363 K)-ethyl acetate as eluants. Single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of a solution in petroleum ether (b.p. 333-363 K)-acetone (5:1, $v / v$ ).

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \\
& M_{r}=236.26 \\
& \mathrm{Monoclinic}, P 2_{1} \\
& a=8.7281(5) \AA \\
& b=8.2720(4) \AA \\
& c=16.972(9) \AA \\
& \beta=102.0473(9)^{\circ} \\
& V=1198.74(11) \AA^{3} \\
& Z=4
\end{aligned}
$$



Figure 2
Packing diagram for (I), showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between molecules $A$ and $B$. H atoms not involved in the interactions have been omitted.

## Data collection

Siemens SMART CCD area- 3147 independent reflections
detector diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.943, T_{\max }=0.980$
7540 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.100$
$S=1.04$
3147 reflections
324 parameters
H-atom parameters constrained

## Table 1

Selected geometric parameters $(\AA)$.

| $\mathrm{O} 1 A-\mathrm{C} 12 A$ | $1.224(2)$ | $\mathrm{O} 1 B-\mathrm{C} 12 B$ | $1.219(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 2 A-\mathrm{C} 7 A$ | $1.225(2)$ | $\mathrm{O} 2 B-\mathrm{C} 7 B$ | $1.215(3)$ |
| $\mathrm{C} 1 A-\mathrm{C} 6 A$ | $1.424(3)$ | $\mathrm{C} 1 B-\mathrm{C} 6 B$ | $1.401(3)$ |
| $\mathrm{C} 1 A-\mathrm{C} 12 A$ | $1.500(3)$ | $\mathrm{C} 1 B-\mathrm{C} 12 B$ | $1.501(3)$ |
| $\mathrm{C} 6 A-\mathrm{C} 7 A$ | $1.494(3)$ | $\mathrm{C} 6 B-\mathrm{C} 7 B$ | $1.516(4)$ |
| $\mathrm{C} 7 A-\mathrm{C} 8 A$ | $1.463(3)$ | $\mathrm{C} 7 B-\mathrm{C} 8 B$ | $1.460(3)$ |
| $\mathrm{C} 8 A-\mathrm{C} 11 A$ | $1.362(2)$ | $\mathrm{C} 8 B-\mathrm{C} 11 B$ | $1.343(3)$ |
| $\mathrm{C} 11 A-\mathrm{C} 12 A$ | $1.459(3)$ | $\mathrm{C} 11 B-\mathrm{C} 12 B$ | $1.460(3)$ |

Table 2
Geometry of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 1 B^{\mathrm{i}}$ | 0.93 | 2.58 | $3.387(3)$ | 145 |
| C15B-H15D $\cdots \mathrm{O} 2 A$ | 0.97 | 2.56 | $3.216(3)$ | 125 |

Symmetry code: (i) $1+x, 1+y, z$.

All H atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The Friedel reflections were merged before the final refinement because of the absence of significant anomalous scattering effects.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used
to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/ PFIZIK/610961.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Usman, A., Fun, H.-K., Wang, L., Zhang, Y. \& Xu, J.-H. (2002). Acta Cryst. E58, o1463-o1465.
Wang, L., Usman, A., Fun, H.-K. Zhang, Y. \& Xu, J.-H. (2003). Acta Cryst. E59, o106-o107.

